IMPORTANT QUESTIONS FOR SECTION B:

1- Find the solution set of the following equations

$$|2a - 3| = 7$$

Solution:

$$|2a - 3| = 7$$

$$2a - 3 = \pm 7$$

Either
$$2a - 3 = 7$$

$$2a - 3 = 7$$

$$2a = 7 + 3$$
$$2a = 10$$

$$a = \frac{10}{2}$$

$$a - \frac{2}{5}$$

$$a=5$$

$$2a - 3 = -7$$

$$2a = -7 + 3$$

$$2a = -4$$

$$a = -$$

$$a = -2$$

The Solution Set = $\{-2, 5\}$

2- Marks obtained by the students in chemistry are given. Find: Arithmetic Mean

Marks Obtained	25-29	30-34	35-39	40-44	45-49
No. of Students	9	18	35	17	5

Solution:

Class Intervals	Mid-Points	Frequency	fx
11 100 1	(x)	(f)	
25 – 29	27	9	$9 \times 27 = 243$
30 - 34	32	18	$18 \times 32 = 576$
35 - 39	37	35	$35 \times 37 = 1295$
40 - 44	42	17	$17 \times 42 = 714$
45 – 49	47	5	$5 \times 47 = 235$
Total	4 (3)	$\sum f = 84$	$\sum f x = 3063$

$$\bar{x} = \frac{\sum fx}{\sum f}$$

$$= \frac{3063}{84}$$

$$= 36.46$$

3- Find the solution set of the following equations

$$\sqrt{12x - 4} = \sqrt{4x + 8}$$

Solution:

$$\sqrt{12x - 4} = \sqrt{4x + 8}$$

Taking square on both sides

$$\left(\sqrt{12x-4}\right)^2 = \left(\sqrt{4x+8}\right)^2$$

$$12x - 4 = 4x + 8$$

Zo San RATION SOR

ZIAUDDIN UNIVERSITY

$$12x - 4x = 8 + 4$$

$$8x = 12$$

$$x = \frac{12}{8}$$

$$x = \frac{\epsilon}{4}$$

$$x = \frac{3}{2}$$

The Solution set = $\left\{\frac{3}{2}\right\}$

4- Find the solution set of the following equations by using Quadratic formula:

$$2b^2 - 7b + 5 = 0$$

Solution:

$$2b^2 - 7b + 5 = 0$$

Here
$$a = 2, b = -7 \text{ and } c = 5$$

By using quadratic formula:

$$b = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$b = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(2)(5)}}{2(2)}$$

$$b = \frac{7 \pm \sqrt{49 - 40}}{4}$$

$$b = \frac{7 \pm \sqrt{9}}{4}$$

$$b = \frac{7 \pm 3}{4}$$

Either

$$b = \frac{7+3}{4}$$

$$b = \frac{10}{4}$$

$$b = \frac{5}{2}$$

Or

$$b = \frac{7-3}{4}$$

$$b = \frac{4}{4}$$

$$b = 1$$

The Solution set = $\left\{1, \frac{5}{2}\right\}$

ZIAUDDIN UNIVERSITY EXAMINATION BOARD

5- Eliminate *t* from the following equations by substitution method.

$$v_f = v_i + gt, \quad s = v_i t + \frac{1}{2}gt^2$$

Solution:

The given equations are

$$v_f = v_i + gt \dots (i)$$

$$s = v_i t + \frac{1}{2} g t^2 \dots (ii)$$

From equation (i)

$$v_f = v_i + gt$$

$$v_f - v_i = gt$$

$$\frac{v_f - v_i}{g} = t$$

$$t = \frac{v_f - v_i}{g} \dots \dots \dots \dots (iii)$$

Put the value of t in equ(ii)

$$Equ(ii) \Rightarrow$$

$$s = v_i \left(\frac{v_f - v_i}{q} \right) + \frac{1}{2} g \left(\frac{v_f - v_i}{q} \right)^2$$

$$s = \frac{v_i(v_f - v_i)}{g} + \frac{g(v_f - v_i)^2}{2g^2}$$

$$s = \frac{v_i v_f - v_i^2}{g} + \frac{(v_f - v_i)^2}{2g}$$

$$s = \frac{2(v_i v_f - v_i^2) + (v_f - v_i)^2}{2g}$$

$$s = \frac{2v_i v_f - 2v_i^2 + v_f^2 - 2v_i v_f + v_i^2}{2q}$$

$$s = \frac{v_f^2 - v_i^2}{2g}$$

$$2gs = v_f^2 - v_i^2$$

The value of "t" has eliminated.

6- Find relations independent of x from the following equations by the use of formulae.

$$x + \frac{1}{x} = 2p$$
, $x - \frac{1}{x} = 2q + 1$

Solution:

The given equations are

$$x + \frac{1}{x} = 2p - - - (i)$$

$$x - \frac{1}{x} = 2q + 1 - - - (ii)$$

Taking square on both sides on equation (i)

$$\left(x + \frac{1}{x}\right)^{2} = (2p)^{2}$$

$$\therefore (a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$x^{2} + 2(x)\left(\frac{1}{x}\right) + \left(\frac{1}{x}\right)^{2} = 4p^{2}$$

$$x^{2} + 2 + \frac{1}{x^{2}} = 4p^{2}$$

$$x^{2} + \frac{1}{x^{2}} = 4p^{2} - 2 - - - (iii)$$

Taking square on both sides on equation (ii)

$$\left(x - \frac{1}{x}\right)^2 = (2q + 1)^2$$

$$\therefore (a - b)^2 = a^2 - 2ab + b^2$$

$$x^2 - 2(x)\left(\frac{1}{x}\right) + \left(\frac{1}{x}\right)^2 = (2q)^2 + 2(2q)(1) + (1)^2$$

$$x^2 - 2 + \frac{1}{x^2} = 4q^2 + 4q + 1$$

$$x^2 + \frac{1}{x^2} = 4q^2 + 4q + 1 + 2$$

$$x^2 + \frac{1}{x^2} = 4q^2 + 4q + 3 - - - (iv)$$

By comparing equ(i) and equ(ii), we get:

$$4p^{2} - 2 = 4q^{2} + 4q + 3$$

$$4p^{2} - 2 - 4q^{2} - 4q - 3 = 0$$

$$4p^{2} - 4q^{2} - 4q - 5 = 0$$

$$4p^{2} - 4q^{2} - 4q - 5 = 0$$
The value of "x" has eliminated.

7- Eliminate *t* from the following with the help of formulae:

$$\frac{x}{p} = \frac{1+t^2}{2t}$$
, $\frac{y}{q} = \frac{1-t^2}{2t}$

Solution: The given equations are
$$\frac{x}{p} = \frac{1+t^2}{2t} - ---(i)$$

$$\frac{y}{p} = \frac{1-t^2}{2t} - ---(ii)$$

From equation (i)

$$\frac{x}{p} = \frac{1+t^2}{2t}$$

Squaring on both sides

$$\left(\frac{x}{p}\right)^2 = \left(\frac{1+t^2}{2t}\right)^2$$

$$(a + b)^2 = a^2 + 2ab + b^2$$

$$\frac{x^2}{p^2} = \frac{(1)^2 + 2(1)(t^2) + (t^2)^2}{4t^2}$$

$$\frac{x^2}{p^2} = \frac{1 + 2t^2 + t^4}{4t^2} \dots \dots \dots \dots (iii)$$

From equation (ii)

$$\frac{y}{p} = \frac{1 - t^2}{2t}$$

$$\left(\frac{y}{p}\right)^2 = \left(\frac{1-t^2}{2t}\right)^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$\frac{y^2}{a^2} = \frac{(1)^2 - 2(1)(t^2) + (t^2)^2}{4t^2}$$

$$\frac{y^2}{a^2} = \frac{1 - 2t^2 + t^4}{4t^2} \dots \dots \dots (iv)$$

Subtracting equation (iv) from equation (iii), we get

$$\frac{x^2}{p^2} - \frac{y^2}{q^2} = \frac{1 + 2t^2 + t^4}{4t^2} - \frac{1 - 2t^2 + t^4}{4t^2}$$

Zo REMINATION BOW

ZIAUDDIN UNIVERSITY

$$\frac{x^{2}}{p^{2}} - \frac{y^{2}}{q^{2}} = \frac{(1 + 2t^{2} + t^{4}) - (1 - 2t^{2} + t^{4})}{4t^{2}}$$

$$\frac{x^{2}}{p^{2}} - \frac{y^{2}}{q^{2}} = \frac{1 + 2t^{2} + t^{4} - 1 + 2t^{2} - t^{4}}{4t^{2}}$$

$$\frac{x^{2}}{p^{2}} - \frac{y^{2}}{q^{2}} = \frac{4t^{2}}{4t^{2}}$$

$$\frac{x^{2}}{p^{2}} - \frac{y^{2}}{q^{2}} = 1$$

The value of "t" has eliminated.

8- If
$$\frac{a}{b+c} = \frac{b}{c+a} = \frac{c}{a+b}$$
 and $a+b+c \neq 0$ prove that $a=b=c$.

Proof: From the theorems on proportion

Each fraction
$$= \frac{a+b+c}{b+c+c+a+a+b}$$
$$= \frac{a+b+c}{2a+2b+2c}$$
$$= \frac{(a+b+c)}{2(a+b+c)}$$
$$= \frac{1}{2}$$

Now,

each fraction
$$=\frac{1}{2}$$

$$\frac{a}{b+c} = \frac{1}{2}$$

$$2a = b + c$$

Adding 'a' on both sides

$$2a + a = a + b + c$$

$$3a = a + b + c$$

$$a = \frac{a+b+c}{3} \longrightarrow (i)$$

$$\frac{b}{c+a} = \frac{1}{2}$$

$$2b = c + a$$

Adding 'b' on both sides

$$2b + b = a + b + c$$
$$3b = a + b + c$$

Zo Parting

ZIAUDDIN UNIVERSITY

$$b = \frac{a+b+c}{3} \longrightarrow (ii)$$

$$\frac{c}{a+b} = \frac{1}{2}$$

$$2c = a+b$$

Adding 'c' on both sides

$$2c + c = a + b + c$$

$$3c = a + b + c$$

$$c = \frac{a+b+c}{3} \longrightarrow (iii)$$

Comparing equation (i), (ii) and (iii), we get

$$a = b = c$$
 Proved

9- If
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f}$$
 prove that $\frac{a^4b^2 + a^2e^2 - e^4f}{b^6 + b^2f^2 - f^5} = \frac{a^4}{b^4}$

Proof:

From:

Let
$$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = k$$

Then $\frac{a}{b} = k \Rightarrow a = bk$
 $\frac{c}{d} = k \Rightarrow c = dk$
 $\frac{e}{f} = k \Rightarrow e = fk$

L. H. $S = \frac{a^4b^2 + a^2e^2 - e^4f}{b^6 + b^2f^2 - f^5}$
 $= \frac{(bk)^4b^2 + (bk)^2(fk)^2 - (fk)^4f}{b^6 + b^2f^2 - f^5}$
 $= \frac{b^6k^4 + b^2f^2k^4 - f^5k^4}{b^6 + b^2f^2 - f^5}$
 $= \frac{k^4(b^6 + b^2f^2 - f^5)}{b^6 + b^2f^2 - f^5}$
 $= k^4$

R. H. $S = \frac{a^4}{b^4}$
 $= \frac{(bk)^4}{b^4}$

 $=\frac{b^4k^4}{b^4}$

R. H. S =
$$k^4$$

R. H. S = L. H. S

Hence

$$=\frac{a^4b^2+a^2e^2-e^4f}{b^6+b^2f^2-f^5}=\frac{a^4}{b^4}$$

10-Solve the following for *x*:

$$\frac{(x+3)^2 + (x-1)^2}{(x+3)^2 - (x-1)^2} = \frac{5}{4}$$

Solution:
$$\frac{(x+3)^2 + (x-1)^2}{(x+3)^2 - (x-1)^2} = \frac{5}{4}$$

By componendo and dividendo property

$$\frac{\{(x+3)^2 + (x-1)^2\} + \{(x+3)^2 - (x-1)^2\}}{\{(x+3)^2 + (x-1)^2\} - \{(x+3)^2 - (x-1)^2\}} = \frac{5+4}{5-4}$$

$$\frac{(x+3)^2 + (x-1)^2 + (x+3)^2 - (x-1)^2}{(x+3)^2 + (x-1)^2 - (x+3)^2 + (x-1)^2} = \frac{9}{1}$$

$$\frac{2(x+3)^2}{2(x-1)^2} = 9$$

$$\frac{(x+3)^2}{(x-1)^2} = 9$$

$$\left(\frac{x+3}{x-1}\right)^2 = 9$$

Taking square root on both sides

$$\sqrt{\left(\frac{x+3}{x-1}\right)^2} = \sqrt{9}$$

$$\frac{x+3}{x-1} = 3$$

$$x+3 = 3(x-1)$$

$$x+3 = 3x-3$$

$$3+3 = 3x-x$$

$$6 = 2x$$

$$x = \frac{6}{2}$$

$$x = 3$$
Ans.

12-Prove that Congruent Chords of a circle are equidistant from the centre.

Given:

 $\overline{\overline{AB}}$ and \overline{CD} are two congruent chords in a circle with centre O. $\overline{OP} \perp \overline{AB}$ and $\overline{OQ} \perp \overline{CD}$

$\frac{\text{To Prove that:}}{\overline{OP} \cong \overline{OQ}}$

 $\frac{\text{Construction:}}{\text{Draw }\overline{\textit{OA}} \text{ and } \overline{\textit{OC}}}$

Proof: Statements	Reasons
1. $m\overline{AP} = \frac{1}{2}m\overline{AB}$ 2. $m\overline{CQ} = \frac{1}{2}m\overline{CD}$ 3. But $m\overline{AB} = m\overline{CD}$ 4. $\therefore m\overline{AP} = m\overline{CQ}$ 5. In $\triangle AOP \leftrightarrow \triangle COQ$ i. $\overline{AO} \cong \overline{CO}$ ii. $\overline{AP} \cong \overline{CQ}$ iii. $\angle APO \cong \angle CQO$ 6. $\triangle AOP \cong \triangle COQ$ 7. $\overline{OP} \cong \overline{OQ}$	 1. \$\overline{OP}\$ \pm \overline{AB}\$ (Theorem) 2. \$\overline{OQ}\$ \pm \overline{CD}\$ (Theorem) 3. Given 4. Transitive property of equation. 5. i. Radial segments of same circle ii. Proved above iii. Right angles 6. In right Δs, H.S ≅ H.S 7. By the congruence of Δs Q.E.D

13- Construct the following triangles

 ΔDEF such that $m\overline{DE}=8.7~cm$, $m\overline{EF}=4.3cm$ and $m\angle E=45^{\circ}.$

Steps of construction:

- (i) Draw the longest line segment \overline{DE} of measure 8.7 cm.
- (ii) On point E draw an angle XEF of measure 45°.
- (iii) Cut \overline{EF} of measure 4.3 cm from \overline{EX} .
- (iv) Join \overline{DF} so we get the required triangle DEF.

14- Prove that:
$$\frac{\cot^2 \alpha - 1}{1 + \cot^2 \alpha} = 2 \cos^2 \alpha - 1$$

Solution:

Taking L.H.S

$$=\frac{\cot^2\alpha-1}{1+\cot^2\alpha}$$

$$= \frac{\frac{\cos^2 \alpha}{\sin^2 \alpha} - 1}{1 + \frac{\cos^2 \alpha}{\sin^2 \alpha}}$$

$$= \frac{\frac{\cos^2 \alpha - \sin^2 \alpha}{\sin^2 \alpha}}{\frac{\sin^2 \alpha + \cos^2 \alpha}{\sin^2 \alpha}}$$

$$=\frac{\cos^2\alpha-\sin^2\alpha}{\sin^2\alpha+\cos^2\alpha}$$

$$\because \frac{\cos \alpha}{\sin \alpha} = \cot \alpha$$

$$: \sin^2 \alpha + \cos^2 \alpha$$

$$=\frac{\cos^2\alpha-\sin^2\alpha}{1}$$

$$=\cos^2\alpha-\sin^2\alpha$$

$$: \sin^2 \alpha + \cos^2 \alpha = 1$$

$$: \sin^2 \alpha = 1 - \cos^2 \alpha$$

$$=\cos^2\alpha-(1-\cos^2\alpha)$$

$$= \cos^2 \alpha - 1 + \cos^2 \alpha$$

$$=\cos^2\alpha + \cos^2\alpha - 1$$

$$=2\cos^2\alpha-1$$

15- A ladder 8 meters long reaches a point on a wall such that it makes angle of 60^{0} with the ground. Find the height of the point on the wall where the top end of the ladder touches it.

Solution:

Consider a right angle $\triangle ACB$

Where,

height of wall, a = ?

Using,

$$\sin\theta = \frac{Perpendicular}{Hypotenuse}$$

$$\sin\theta = \frac{a}{c}$$

$$\sin 60^0 = \frac{a}{8}$$

As we know that,

$$\sin 60^0 = \frac{\sqrt{3}}{2}$$

$$\frac{\sqrt{3}}{2} = \frac{a}{8}$$

By cross multiplication

$$8 \times \sqrt{3} = a \times 2$$

$$8\sqrt{3} = 2a$$

$$a = \frac{8\sqrt{3}}{2}$$

$$a = 4\sqrt{3}$$

$$\therefore \sqrt{3} = 1.7320$$

$$a = 4(1.7320)$$

$$a = 6.928 m$$

16- If a side of a triangle is extended, the exterior angle so formed is, in measure, greater than either of the two interiors opposite angles.

Given

 $\triangle ABC$ with exterior angle ACE.

To Prove

 $m \angle ACE > m \angle A$ and $m \angle ACE > m \angle B$.

Construction

Let O be the mid-point of \overline{AC} . Draw \overline{BO} and cut off $\overline{OD} \cong \overline{BO}$, and draw \overline{CD} .

Proof

#	Statements	Reasons				
1.	In $\triangle AOB \leftrightarrow \triangle COD$					
	(i) $\overline{AO} \cong \overline{CO}$	(i) Construction.				
	(ii) $\angle AOB \cong \angle COD$	(ii) Vertical angles.				
	(iii) $\overline{BO} \cong \overline{DO}$	(iii) Construction.				
2.	So, $\triangle AOB \cong \triangle COD$	S.A.S. Postulate.				
3.	$\therefore m \angle A \cong m \angle OCD$	By the congruence of triangles.				
4.	But $m \angle ACE = m \angle OCD + m \angle DCE$	By angle addition postulate.				
5.	So, $m \angle ACE > m \angle OCD$	Whole is greater than its part.				
6.	$\therefore m \angle ACE > m \angle A$	By (3).				
7.	Similarly, $m \angle ACE > m \angle B$	By the above process.				

Q. E. D.

17-If a transversal intersects two coplanar lines such that the pair of alternate angles is congruent, then the lines are parallel.

Given

 \overrightarrow{AB} and \overrightarrow{CD} are two coplanar lines and transversal \overrightarrow{EF} cuts them at point P and Q respectively, such that $\angle 1 \cong \angle 2$ (pair of alternate angles).

To Prove

 $\overrightarrow{AB} \parallel \overrightarrow{CD}$.

Proof

If \overrightarrow{AB} and \overrightarrow{CD} are not parallel then being coplanar, they will meet at a point (say at R), and \overrightarrow{PQR} will be a triangle and look like Fig. 2.

#	Statements	Reasons	
1.	In ΔPQR , $\angle 1$ is exterior angle and $\angle 2$ is interior angle opposite to $\angle 1$.	By definition.	
2.	So, $m \angle 1 > m \angle 2$	By Theorem 2.	
3.	But $m \angle 1 = m \angle 2$	Given.	
4.	Statements (2) and (3) cannot be true simultaneously.	Trichotomy Property of order relation.	
5.	Hence $m \angle 1 = m \angle 2$ and \overline{AB} and \overline{CD} do not intersect each other.	Contradiction in assumption.	
6.	Or $\overrightarrow{AB} \parallel \overrightarrow{CD}$	Because they are coplanar and do not intersect.	

Q. E. D.

